
CSC 108H: Introduction to Computer
Programming

Summer 2011

Marek Janicki

May 26 2011

Administration

● Office hours

● Held in BA 2200 at T12-2, F2-4
● If this changes, will be posted on announcements.

● Twice as many people in Thursday tutorials.

● Consider switching if you can.
● Class in BA1170 on June 23rd and July 14th.

● Website typo in info sheet, there is no trailing h.

● A redirect has been added.
● My e-mail is quellan@cs.toronto.edu
● Not quellan@cdf.toronto.edu

mailto:quellan@cs.toronto.edu

Assignment 1

● This is a short and simple assignment.
● It has been posted.
● Needs to be done on your own.
● You can write it wherever, but before you

submit, make sure that it runs on the CDF
machines.

● No questions about it will be accepted after
June 2nd.

May 26 2011

Programs can be adaptive.

● Last time we compared programs to
recipes.
● Not entirely accurate.

● Programs can behave differently
depending on the situation.
● We saw a very brief snippet of this last week.

May 26 2011

Booleans: A new type.

● Can have two values True, False.
● Have three operations: not, and, or.
● not changes a True to a False and vice

versa.
● and returns False unless all the

arguments are True.
● or returns True unless all the arguments

are False.

May 26 2011

Truth Tables

● A way of representing boolean
expressions.

x y not x not y x and y x or y

True True False False True True

True False False True False True

False True True False False True

False False True True False False

May 26 2011

What if we want to adapatively assign
Boolean values.

● We can use relational operators.
● <,>,<=,>=,!=, ==

● These are all comparison operators that
return True or False.

● == is the equality operator.
● != is not equals.

May 26 2011

Boolean Expressions and
Representation

● Can combine boolean operators (and, or,
not) and relational operators (<,>,etc) and
arithmetic operators (+,-,*, etc).
● 5+7<4*3 or 1-2 >2-4 and 15==4 is a legal

expression.
● Arithmetic goes before relational goes before

boolean.
● False is represented as 0, and True is

represented as 1.
➢ Can lead to weirdness. Best to avoid exploiting

this.

May 26 2011

Short Circuit Evaluation

● Python only evaluates a boolean
expression as long as the answer is not
clear.
● It will stop as soon as the answer is clear.

● This, combined with the nature of boolean
representation can lead to strange
behaviour.

● Exploiting these behaviours is bad style.

May 26 2011

How to use boolean variables

● Recall that we want to make our code
adaptive.

● To use boolean variables to selectively
execute blocks of code, we use if
statements.

May 26 2011

If statement

● The general form of an if statement is:

if condition:

 block
● Example:

if grade >=50:

 print “pass”

May 26 2011

If statement

● The general form of an if statement is:

if condition:

 block
● The condition is a boolean expression.
● Recall that a block is a series of python

statements.
● If the condition evaluates to true the block

is executed.

May 26 2011

Other Forms of if statement

● If we want to execute different lines of
code based on the outcome of the
boolean expression we can use:

if condition:

 block

else:

 block
● The block under the else is executed if the

condition evaluates to false.

May 26 2011

More general if statement.

if condition1:

 block

elif condition2:

 block

elif condition3:

 block

else:

 block

● Python evalutates the
conditions in order.

● It executes the block of
the first (and only the
first) condition that is
true.

● The final else is
optional.

May 26 2011

Style advice for booleans.

● If you are unsure of precedence, use
parentheses.
● Will make it easier for a reader.
● Also use parentheses for complicated

expressions.
● Simplify your Boolean expressions.

● Get rid of double negatives, etc.

May 26 2011

Break, the first

May 26 2011

Review of Functions

● We started by looking at some of python's
native functions.

● We saw how to call functions.
● Saw how to define our own.

May 26 2011

Why functions?

● Allow us to reuse bits of code, which
makes updating and testing much easier.
● Only need to test and update the function,

rather than every place that we use it.
● Chunking! Allows us to parse information

much better.
● Human mind is pretty limited in what it can

do.
● Function names allow us to have a shorthand

for what a function does.

May 26 2011

Return vs. Print

● Recall that functions end if they see a return
statement, and return the value of the expression after
the keyword return.

● If there is no return statement, the function returns
None.

● We've also seen snippets of the print statement.

● Print takes one or more expressions separated by a
comma, and prints them to the screen.

● This is different than a return statement, but looks
identical in the shell.

May 26 2011

Multiple Function calls

● Sometimes we want to have functions
calling other functions.
● f(g(4))

● In this case, we use the 'inside out' rule,
that is we apply g first, and then we apply f
to the result.

● If the functions can have local variables,
this can get complicated.

May 26 2011

How does python choose variables?

● Python has local and global variables.
● Local variables are defined inside of

functions, global variables are defined
outside of functions.

● What happens if a local variable is the
same as a global variable?

May 26 2011

Generally python will...

● First, check local variables defined in a
function.

● Then check local variables in an enclosing
function.
● That is for f(g(4)) it will check g's local

variables first, and then f's local variables.
● Then it will check global variables.
● Finally it will check built-in variables.

May 26 2011

How to think about scope.

● We use namespaces.
● A name space is an area in which a

variable is defined.
● Each time we call a function, we create a

local namespace.
● We refer to that first, and go down to the

enclosing functions name space or global
namespace as necessary.

May 26 2011

Style conventions for Functions.

● As we've seen, python allows us to be
somewhat careless in where we initialise
and call variables.

● Exploiting this is bad style.
● It makes code hard to read and prone to

errors.

May 26 2011

Designing Functions

● Need to choose parameters.
● Ask “what does the function need to know”.
● Everything it needs to know should be

passed as a parameter.
● Do not rely on global parameters.

● Need to choose whether to return or not to
return.

➢ Functions that return information to code should
return, those that show something to the user
shouldn't (print, media.show(), etc).

May 26 2011

Break, the second.

May 26 2011

Function Documentation

● Recall that we can use the built-in function
help() to get information on functions or
modules.

● We can do this on functions that we've
defined as well, but it doesn't give much
information.

● We can add useful documentation with
docstrings.
● A docstring is surrounded by ''' and must be

the first line of a module or function.

May 26 2011

Docstrings

● If the first line of a function or module is a
string, we call it a docstring.
● Short for documentation string.

● Python saves the string to return if the
help function is called.

● Convention: Leave a blank line after but
not before a docstring.

● All functions should have docstrings.

May 26 2011

Why Docstrings?

● If you write the docstring first, you have an
instant sanity check.
● That is, you can be sure that the function is

doing what you want it to do.
● Makes portability and updating easier.

● Allows other people to know what your
functions do and how to use them, without
having get into the code.

● Allows for good chunking.

May 26 2011

Writing Good Docstrings.

● '''A sunset module.'''
● '''Changes into a sunset.'''
● These are terrible docstrings.

● They are vague and ambiguous. The don't
tell us what the function expects or what it
does.

● How can we make it better?

May 26 2011

Writing Good Docstrings.

● Describes what a function does.
● '''Changes into a sunset.'''
● '''Makes a picture look like it was taken at

sunset.'''
● '''Makes a picture look like it was taken at

sunset by decreasing the green and blue
by 70%.'''

May 26 2011

Writing Good Docstrings.

● Describes what a function does.
● '''Changes into a sunset.'''
● '''Makes a picture look like it was taken

at sunset.'''
● '''Makes a picture look like it was taken

at sunset by decreasing the green and
blue by 70%.'''

May 26 2011

Writing Good Docstrings.

● Does not describe how a function works.
● More useful for chunking, and it's

unnecessary information if we're using the
function.

● '''Makes a picture look like it was taken at
sunset.'''

● '''Makes a picture look like it was taken at
sunset by decreasing the green and blue
by 70%.'''

May 26 2011

Writing Good Docstrings.

● Does not describe how a function works.
● More useful for chunking, and it's

unnecessary information if we're using the
function.

● '''Makes a picture look like it was taken
at sunset.'''

● '''Makes a picture look like it was taken at
sunset by decreasing the green and blue
by 70%.'''

May 26 2011

Writing Good Docstrings.

● Makes the purpose of every parameter
clear and refers to the parameter by
name.

● '''Makes a picture look like it was taken at
sunset.'''

● '''Takes a given picture and makes it look
like it was taken at sunset.'''

● '''Takes a picture pic and makes it look like
it was taken at sunset.'''

May 26 2011

Writing Good Docstrings.

● Makes the purpose of every parameter
clear and refers to the parameter by
name.

● '''Makes a picture look like it was taken at
sunset.'''

● '''Takes a given picture and makes it look
like it was taken at sunset.'''

● '''Takes a picture pic and makes it look
like it was taken at sunset.'''

May 26 2011

Writing Good Docstrings.

● Be clear if a function returns a value, and
if so, what.

Consider average_red(pic)
● '''Computer the average amount of red in a

picture.'''
● '''Returns the average amount of red (a

float) in a picture pic.'''

May 26 2011

Writing Good Docstrings.

● Make sure to explicitly state any
assumptions the function has.

Def decrease_red(pic,percent)
● '''Decreases the amount of red per pixel in

picture pic by int percent. percent must be
between 0 and 100.'''

May 26 2011

Writing Good Docstrings.

● Be concise and grammatically correct.
● Use commands rather than descriptions.
● '''Takes a picture pic and makes it appear

as it if was taken at sunset.'''
● '''Take picture pic and make it appear to

have been taken at sunset.'''

May 26 2011

Writing Good Docstrings.

● Describes what a function does.

● Does not describe how a function works.

● Makes the purpose of every parameter clear and
refers to the parameter by name.

● Be clear if a function returns a value, and if so, what.

● Make sure to explicitly state any assumptions the
function has.

● Be concise and grammatically correct.

● Use commands rather than descriptions.

May 26 2011

Boolean Docstrings.

● def: is_odd(x):

return (x%2)==1
● The docstring for this might look like

'''Return True if int x is odd, and False
otherwise.'''

● Commonly shortened to:
● '''Return True iff int x is odd.

May 26 2011

IFF

● iff stands for if and only if.
● So in fact we wrote:
● '''Return True if int x is odd and only iff int x

is odd.'''
● We didn't specify what to do if x is not odd.
● But for boolean functions, it is understood

that we are to return False if we're not
returning True.

May 26 2011

Writing Good Docstrings.

● Docstrings do not include definitions or
hints.

● The docstring for sqrt is not:

'''Return the sqrt of (x). The sqrt of x is a
number, that when multiplied by itself
evaluates to x'.

● Is it simply:
● Return the square root of x.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

