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Administration

● Office hours

● Held in BA 2200 at T12-2, F2-4
● If this changes, will be posted on announcements.

● Twice as many people in Thursday tutorials.

● Consider switching if you can.
● Class in BA1170 on June 23rd and July 14th.

● Website typo in info sheet, there is no trailing h.

● A redirect has been added.
● My e-mail is quellan@cs.toronto.edu
● Not quellan@cdf.toronto.edu

mailto:quellan@cs.toronto.edu


Assignment 1

● This is a short and simple assignment.
● It has been posted.
● Needs to be done on your own.
● You can write it wherever, but before you 

submit, make sure that it runs on the CDF 
machines.

● No questions about it will be accepted after 
June 2nd.
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Programs can be adaptive.

● Last time we compared programs to 
recipes.
● Not entirely accurate.

● Programs can behave differently 
depending on the situation.
● We saw a very brief snippet of this last week.
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Booleans: A new type.

● Can have two values True, False.
● Have three operations: not, and, or.
● not changes a True to a False and vice 

versa.
● and returns False unless all the 

arguments are True.
● or returns True unless all the arguments 

are False.
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Truth Tables

● A way of representing boolean 
expressions.

x y not x not y x and y x or y

True True False False True True

True False False True False True

False True True False False True

False False True True False False
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What if we want to adapatively assign 
Boolean values.

● We can use relational operators.
● <,>,<=,>=,!=, ==

● These are all comparison operators that 
return True or False.

● == is the equality operator.
● != is not equals.



May 26 2011  

Boolean Expressions and 
Representation

● Can combine boolean operators (and, or, 
not) and relational operators (<,>,etc) and 
arithmetic operators (+,-,*, etc).
● 5+7<4*3 or 1-2 >2-4 and 15==4 is a legal 

expression.
● Arithmetic goes before relational goes before 

boolean.
● False is represented as 0, and True is 

represented as 1.
➢ Can lead to weirdness. Best to avoid exploiting 

this.
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Short Circuit Evaluation

● Python only evaluates a boolean 
expression as long as the answer is not 
clear.
● It will stop as soon as the answer is clear.

● This, combined with the nature of boolean 
representation can lead to strange 
behaviour.

● Exploiting these behaviours is bad style.
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How to use boolean variables

● Recall that we want to make our code 
adaptive.

● To use boolean variables to selectively 
execute blocks of code, we use if 
statements.
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If statement

● The general form of an if statement is:

if condition:

    block
● Example:

if grade >=50:

    print “pass”
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If statement

● The general form of an if statement is:

if condition:

    block
● The condition is a boolean expression.
● Recall that a block is a series of python 

statements.
● If the condition evaluates to true the block 

is executed.
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Other Forms of if statement

● If we want to execute different lines of 
code based on the outcome of the 
boolean expression we can use:

if condition:

    block

else:

    block
● The block under the else is executed if the 

condition evaluates to false.
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More general if statement.

if condition1:

    block

elif condition2:

    block

elif condition3:

    block

else:

    block

● Python evalutates the 
conditions in order.

● It executes the block of 
the first (and only the 
first) condition that is 
true.

● The final else is 
optional.
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Style advice for booleans.

● If you are unsure of precedence, use 
parentheses.
● Will make it easier for a reader.
● Also use parentheses for complicated 

expressions.
● Simplify your Boolean expressions.

● Get rid of double negatives, etc.
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Break, the first
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Review of Functions

● We started by looking at some of python's 
native functions.

● We saw how to call functions.
● Saw how to define our own.



May 26 2011  

Why functions?

● Allow us to reuse bits of code, which 
makes updating and testing much easier.
● Only need to test and update the function, 

rather than every place that we use it.
● Chunking! Allows us to parse information 

much better.
● Human mind is pretty limited in what it can 

do.
● Function names allow us to have a shorthand 

for what a function does.
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Return vs. Print

● Recall that functions end if they see a return 
statement, and return the value of the expression after 
the keyword return.

● If there is no return statement, the function returns 
None.

● We've also seen snippets of the print statement.

● Print takes one or more expressions separated by a 
comma, and prints them to the screen.

● This is different than a return statement, but looks 
identical in the shell.
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Multiple Function calls

● Sometimes we want to have functions 
calling other functions.
● f(g(4))

● In this case, we use the 'inside out' rule, 
that is we apply g first, and then we apply f 
to the result.

● If the functions can have local variables, 
this can get complicated.
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How does python choose variables?

● Python has local and global variables.
● Local variables are defined inside of 

functions, global variables are defined 
outside of functions.

● What happens if a local variable is the 
same as a global variable?
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Generally python will...

● First, check local variables defined in a 
function.

● Then check local variables in an enclosing 
function.
● That is for f(g(4)) it will check g's local 

variables first, and then f's local variables.
● Then it will check global variables.
● Finally it will check built-in variables.
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How to think about scope.

● We use namespaces.
● A name space is an area in which a 

variable is defined.
● Each time we call a function, we create a 

local namespace.
● We refer to that first, and go down to the 

enclosing functions name space or global 
namespace as necessary.
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Style conventions for Functions.

● As we've seen, python allows us to be 
somewhat careless in where we initialise 
and call variables.

● Exploiting this is bad style.
● It makes code hard to read and prone to 

errors.
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Designing Functions

● Need to choose parameters.
● Ask “what does the function need to know”.
● Everything it needs to know should be 

passed as a parameter.
● Do not rely on global parameters.

● Need to choose whether to return or not to 
return.

➢ Functions that return information to code should 
return, those that show something to the user 
shouldn't (print, media.show(), etc).
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Break, the second.



May 26 2011  

Function Documentation

● Recall that we can use the built-in function 
help() to get information on functions or 
modules.

● We can do this on functions that we've 
defined as well, but it doesn't give much 
information.

● We can add useful documentation with 
docstrings.
● A docstring is surrounded by ''' and must be 

the first line of a module  or function.
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Docstrings

● If the first line of a function or module is a 
string, we call it a docstring.
● Short for documentation string.

● Python saves the string to return if the 
help function is called.

● Convention: Leave a blank line after but 
not before a docstring.

● All functions should have docstrings.
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Why Docstrings?

● If you write the docstring first, you have an 
instant sanity check.
● That is, you can be sure that the function is 

doing what you want it to do.
● Makes portability and updating easier.

● Allows other people to know what your 
functions do and how to use them, without 
having get into the code.

● Allows for good chunking.
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Writing Good Docstrings.

● '''A sunset module.'''
● '''Changes into a sunset.'''
● These are terrible docstrings.

● They are vague and ambiguous. The don't 
tell us what the function expects or what it 
does.

● How can we make it better?
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Writing Good Docstrings.

● Describes what a function does.
● '''Changes into a sunset.'''
● '''Makes a picture look like it was taken at 

sunset.'''
● '''Makes a picture look like it was taken at 

sunset by decreasing the green and blue 
by 70%.'''
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Writing Good Docstrings.

● Describes what a function does.
● '''Changes into a sunset.'''
● '''Makes a picture look like it was taken 

at sunset.'''
● '''Makes a picture look like it was taken 

at sunset by decreasing the green and 
blue by 70%.'''
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Writing Good Docstrings.

● Does not describe how a function works.
● More useful for chunking, and it's 

unnecessary information if we're using the 
function.

● '''Makes a picture look like it was taken at 
sunset.'''

● '''Makes a picture look like it was taken at 
sunset by decreasing the green and blue 
by 70%.'''
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Writing Good Docstrings.

● Does not describe how a function works.
● More useful for chunking, and it's 

unnecessary information if we're using the 
function.

● '''Makes a picture look like it was taken 
at sunset.'''

● '''Makes a picture look like it was taken at 
sunset by decreasing the green and blue 
by 70%.'''



May 26 2011  

Writing Good Docstrings.

● Makes the purpose of every parameter 
clear and refers to the parameter by 
name.

● '''Makes a picture look like it was taken at 
sunset.'''

● '''Takes a given picture and makes it look 
like it was taken at sunset.'''

● '''Takes a picture pic and makes it look like 
it was taken at sunset.'''
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Writing Good Docstrings.

● Makes the purpose of every parameter 
clear and refers to the parameter by 
name.

● '''Makes a picture look like it was taken at 
sunset.'''

● '''Takes a given picture and makes it look 
like it was taken at sunset.'''

● '''Takes a picture pic and makes it look 
like it was taken at sunset.'''
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Writing Good Docstrings.

● Be clear if a function returns a value, and 
if so, what.

Consider average_red(pic)
● '''Computer the average amount of red in a 

picture.'''
● '''Returns the average amount of red (a 

float) in a picture pic.'''
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Writing Good Docstrings.

● Make sure to explicitly state any 
assumptions the function has.

Def decrease_red(pic,percent)
● '''Decreases the amount of red per pixel in 

picture pic by int percent. percent must be 
between 0 and 100.'''
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Writing Good Docstrings.

● Be concise and grammatically correct.
● Use commands rather than descriptions.
● '''Takes a picture pic and makes it appear 

as it if was taken at sunset.'''
● '''Take picture pic and make it appear to 

have been taken at sunset.'''
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Writing Good Docstrings.

● Describes what a function does.

● Does not describe how a function works.

● Makes the purpose of every parameter clear and 
refers to the parameter by name.

● Be clear if a function returns a value, and if so, what.

● Make sure to explicitly state any assumptions the 
function has.

● Be concise and grammatically correct.

● Use commands rather than descriptions.
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Boolean Docstrings.

● def: is_odd(x):

return (x%2)==1
● The docstring for this might look like 

'''Return True if int x is odd, and False 
otherwise.'''

● Commonly shortened to:
● '''Return True iff int x is odd.
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IFF

● iff stands for if and only if.
● So in fact we wrote:
● '''Return True if int x is odd and only iff int x 

is odd.'''
● We didn't specify what to do if x is not odd.
● But for boolean functions, it is understood 

that we are to return False if we're not 
returning True.
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Writing Good Docstrings.

● Docstrings do not include definitions or 
hints.

● The docstring for sqrt is not:

'''Return the sqrt of (x). The sqrt of x is a 
number, that when multiplied by itself 
evaluates to x'.

● Is it simply:
● Return the square root of x.
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